

Welcome to covid-19-simulations’s documentation!

Getting Started

	About covid-19-simulations

	Installing from source

Documentation

	API
	zero_d

	one_d

	two_d

About covid-19-simulations

[image: ../_images/covid-hacks-2020.svg]
 [https://travis-ci.com/arjunsavel/covid-hacks-2020][image: MIT License]
 [https://opensource.org/licenses/MIT][image: Documentation Status]
 [https://covid-19-simulations.readthedocs.io/en/latest/?badge=latest]We’re seeking to explore problems related to the ongoing COVID-19 pandemic. While an agents-based approach limited by computational tractability will be inherently inaccurate to some degree, we hope that we may be able to gain intuition for questions such as:

	How effective are lockdowns at different points in the spread of disease?

	To what extent might we be under-reporting cases?

	Does quarantining at-risk individuals exclusively for a period of time reduce overall harm?

If you find something that doesn’t work or doesn’t make sense, please file an issue on GitHub. If you’re interested in helping out with the project, we’d love to have you on board! Get in contact (asavel@berkeley.edu) or just fork the repository and start working — we’ll review your pull request when you’re ready!

Installing from source

This code is developed on GitHub [https://github.com/arjunsavel/covid-hacks-2020]. If you received the code as a tarball or zip, skip to below the git clone line. I would recommending performing the below steps in a fresh conda environment.

python3 -m pip install -U pip
python3 -m pip install -U setuptools setuptools_scm pep517
git clone https://github.com/arjunsavel/covid-hacks-2020.git
cd covid-hacks-2020
pip install -r requirements.txt

API

zero_d

	
covid_19_simulations.zero_d.infect(df, trans_rate, day_name)[source]

	Simulates a single day of infection. Each infected person

NOTE: a 0 counts as infected, while a 1 is healthy.

	Inputs:

	
	df(pandas DataFrame) object holding all values of infected people. Each

	column of “infected day _” corresponds to a different day,
with “_” being some integer or float. The “name” column
assigns a name to each object, independent of index. In
the infected columns, a 0 counts as infected, while a 1 is
healthy.

	trans_rate(float) rate of transmission between individuals. infection

	is performed in a probabilistic manner, casting it as a
draw from a binomial distribution with a rate of
1 - trans_rate.

	day_name(float or int) the day of this infection, used to create a new

	column in the dataframe tracking the day’s infections.

	Outputs:

	
	df(pandas DataFrame) object, same as the input, but with a new column

	holding this day’s infected results.

	
covid_19_simulations.zero_d.simulate(N, trans_rate, t_steps, N_initial)[source]

	Simulates an infection run.

	Inputs:

	N : (int) number of individuals in the system.
trans_rate : (float) rate of transmission between individuals. infection

is performed in a probabilistic manner, casting it as a
draw from a binomial distribution with a rate of
1 - trans_rate.

t_steps : (int) number of time steps (“days”) to consider.
N_initial : (int) number of initially infected individuals.

	Outputs:

	
	df(pandas DataFrame) object holding all values of infected people. Each

	column of “infected day _” corresponds to a different day,
with “_” being some integer or float. The “name” column
assigns a name to each object, independent of index. In
the infected columns, a 0 counts as infected, while a 1 is
healthy.

one_d

	
covid_19_simulations.one_d.animate_histogram(df, title)[source]

	animates a histogram.

adapted from https://matplotlib.org/gallery/animation/animated_histogram.html

	
covid_19_simulations.one_d.infect1D(df, trans_rate, day_name, thresh, power)[source]

	Simulates a single day of infection in 1D.

NOTE: a 0 counts as infected, while a 1 is healthy.

	Inputs:

	
	df(pandas DataFrame) object holding all values of infected people. Each

	column of “infected day _” corresponds to a different day,
with “_” being some integer or float. The “name” column
assigns a name to each object, independent of index. In
the infected columns, a 0 counts as infected, while a 1 is
healthy.

	trans_rate(float) rate of transmission between individuals. infection

	is performed in a probabilistic manner, casting it as a
draw from a binomial distribution with a rate of
1 - trans_rate.

	day_name(float or int) the day of this infection, used to create a new

	column in the dataframe tracking the day’s infections.

	Outputs:

	
	df(pandas DataFrame) object, same as the input, but with a new column

	holding this day’s infected results.

	
covid_19_simulations.one_d.simulate1D(N, trans_rate, t_steps, N_initial, thresh, power, distrib_pop, distrib_infec, kwargs_for_pop={}, kwargs_for_infec={})[source]

	Simulates an infection run in 1D.

	Inputs:

	N : (int) number of individuals in the system.
trans_rate : (float) rate of transmission between individuals. infection

is performed in a probabilistic manner, casting it as a
draw from a binomial distribution with a rate of
1 - trans_rate.

t_steps : (int) number of time steps (“days”) to consider.
N_initial : (int) number of initially infected individuals.
thresh : (float) distance less than which infection is transmitted at the trans_rate;

that is, less than which this function returns a value of 1. At
a distance greater than this, this function returns 1/distance^power.

	power(float) Greater than 0. Power to which the multiplier falls off if the distance

	is greater than some threshold.

distrib_pop : (func) distribution function to determine how individuals are initialized.
distrib_infec : (func) distribution function to determine how initial infections are initialized.
kwargs_for_pop : (dict) keyword arguments passed to the distrib_pop distribution type.

Size not included.

	kwargs_for_infec(dict) keyword arguments passed to the distrib_infect distribution type. Size not

	included.

	Outputs:

	
	df(pandas DataFrame) object holding all values of infected people. Each

	column of “infected day _” corresponds to a different day,
with “_” being some integer or float. The “name” column
assigns a name to each object, independent of index. In
the infected columns, a 0 counts as infected, while a 1 is
healthy.

two_d

	
covid_19_simulations.two_d.distance(frame, ind1, ind2)[source]

	Just finding the distance between two rows and their x-y pairs.

	
covid_19_simulations.two_d.do_multiplier(x, y, power, thresh, df_sorted, df2D_test, farthest_calc)[source]

	

	
covid_19_simulations.two_d.find_first[source]

	return the index of the first occurence of item in vec

	
covid_19_simulations.two_d.infect2D(df, trans_rate, day_name, thresh, power, df_sorted, farthest_calc)[source]

	Simulates a single day of infection in 1D.

NOTE: a 0 counts as infected, while a 1 is healthy.

	Inputs:

	
	df(pandas DataFrame) object holding all values of infected people. Each

	column of “infected day _” corresponds to a different day,
with “_” being some integer or float. The “name” column
assigns a name to each object, independent of index. In
the infected columns, a 0 counts as infected, while a 1 is
healthy.

	trans_rate(float) rate of transmission between individuals. infection

	is performed in a probabilistic manner, casting it as a
draw from a binomial distribution with a rate of
1 - trans_rate.

	day_name(float or int) the day of this infection, used to create a new

	column in the dataframe tracking the day’s infections.

dist_matrix : (numpy.ndarray) distance matrix holding the distances between all individuals.

	Outputs:

	
	df(pandas DataFrame) object, same as the input, but with a new column

	holding this day’s infected results.

	
covid_19_simulations.two_d.initialize_pop_2D(N, distrib, **kwargs)[source]

	This will change once we have the U.S. map.

distrib: size is not a thing again.

	
covid_19_simulations.two_d.simulate2D(N, trans_rate, t_steps, N_initial, thresh, power, distrib_pop, distrib_infec, kwargs_for_pop={}, kwargs_for_infec={})[source]

	Simulates an infection run in 1D.

	Inputs:

	N : (int) number of individuals in the system.
trans_rate : (float) rate of transmission between individuals. infection

is performed in a probabilistic manner, casting it as a
draw from a binomial distribution with a rate of
1 - trans_rate.

t_steps : (int) number of time steps (“days”) to consider.
N_initial : (int) number of initially infected individuals.
thresh : (float) distance less than which infection is transmitted at the trans_rate;

that is, less than which this function returns a value of 1. At
a distance greater than this, this function returns 1/distance^power.

	power(float) Greater than 0. Power to which the multiplier falls off if the distance

	is greater than some threshold.

distrib_pop : (func) distribution function to determine how individuals are initialized.
distrib_infec : (func) distribution function to determine how initial infections are initialized.
kwargs_for_pop : (dict) keyword arguments passed to the distrib_pop distribution type.

Size not included.

	kwargs_for_infec(dict) keyword arguments passed to the distrib_infect distribution type. Size not

	included.

	Outputs:

	
	df(pandas DataFrame) object holding all values of infected people. Each

	column of “infected day _” corresponds to a different day,
with “_” being some integer or float. The “name” column
assigns a name to each object, independent of index. In
the infected columns, a 0 counts as infected, while a 1 is
healthy.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 covid_19_simulations	

 	
 	
 covid_19_simulations.one_d	

 	
 	
 covid_19_simulations.two_d	

 	
 	
 covid_19_simulations.zero_d	

Index

 A
 | C
 | D
 | F
 | I
 | S

A

 	
 	animate_histogram() (in module covid_19_simulations.one_d)

C

 	
 	covid_19_simulations.one_d (module)

 	
 	covid_19_simulations.two_d (module)

 	covid_19_simulations.zero_d (module)

D

 	
 	distance() (in module covid_19_simulations.two_d)

 	
 	do_multiplier() (in module covid_19_simulations.two_d)

F

 	
 	find_first (in module covid_19_simulations.two_d)

I

 	
 	infect() (in module covid_19_simulations.zero_d)

 	infect1D() (in module covid_19_simulations.one_d)

 	
 	infect2D() (in module covid_19_simulations.two_d)

 	initialize_pop_2D() (in module covid_19_simulations.two_d)

S

 	
 	simulate() (in module covid_19_simulations.zero_d)

 	
 	simulate1D() (in module covid_19_simulations.one_d)

 	simulate2D() (in module covid_19_simulations.two_d)

 All modules for which code is available

	covid_19_simulations.one_d

	covid_19_simulations.two_d

	covid_19_simulations.zero_d

 Source code for covid_19_simulations.one_d

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.path as path
import matplotlib.patches as patches
import matplotlib.animation as animation

from tqdm import tqdm

[docs]def infect1D(df, trans_rate, day_name, thresh, power): # need to speed up
 """
 Simulates a single day of infection in 1D.

 NOTE: a 0 counts as infected, while a 1 is healthy.

 Inputs:
 df : (pandas DataFrame) object holding all values of infected people. Each
 column of "infected day _" corresponds to a different day,
 with "_" being some integer or float. The "name" column
 assigns a name to each object, independent of index. In
 the infected columns, a 0 counts as infected, while a 1 is
 healthy.
 trans_rate : (float) rate of transmission between individuals. infection
 is performed in a probabilistic manner, casting it as a
 draw from a binomial distribution with a rate of
 1 - trans_rate.
 day_name : (float or int) the day of this infection, used to create a new
 column in the dataframe tracking the day's infections.

 Outputs:
 df : (pandas DataFrame) object, same as the input, but with a new column
 holding this day's infected results.
 """
 df[f"infected day {day_name}"] = df[f"infected day {day_name - 1}"].copy()
 infected = df[df[f'infected day {day_name}'] == 0.]
 if len(infected) == len(df): # everyone is infected
 return df
 for i in range(len(infected)): # this is number of rows, right?
 # find distance multiplier between this ind and all others
 uninfected = df[df[f'infected day {day_name}'] == 1.]
 r2 = infected['locs'].values[i] # time this versus

 subs = uninfected['locs'].apply(lambda x:abs(x - r2))
 multiplier_col = subs.apply(lambda x:1/pow(x, power) if x > thresh else 1)

 # now get different p values

 p = 1 - (multiplier_col * trans_rate)

 infect_col = np.random.binomial(size=len(uninfected), p=p, n=1) # 1 toss

 # next, create a new column to track this day's number of infected individuals

 df.loc[df[f'infected day {day_name}'] == 1., f'infected day {day_name}'] *= infect_col

uninfected[f"infected day {day_name}"] = uninfected[f"infected day {day_name}"] * infect_col
 return df

[docs]def simulate1D(N, trans_rate, t_steps, N_initial, thresh, power,
 distrib_pop, distrib_infec, kwargs_for_pop={},
 kwargs_for_infec={}):
 """
 Simulates an infection run in 1D.

 Inputs:
 N : (int) number of individuals in the system.
 trans_rate : (float) rate of transmission between individuals. infection
 is performed in a probabilistic manner, casting it as a
 draw from a binomial distribution with a rate of
 1 - trans_rate.
 t_steps : (int) number of time steps ("days") to consider.
 N_initial : (int) number of initially infected individuals.
 thresh : (float) distance less than which infection is transmitted at the trans_rate;
 that is, less than which this function returns a value of 1. At
 a distance greater than this, this function returns 1/distance^power.
 power : (float) Greater than 0. Power to which the multiplier falls off if the distance
 is greater than some threshold.
 distrib_pop : (func) distribution function to determine how individuals are initialized.
 distrib_infec : (func) distribution function to determine how initial infections are initialized.
 kwargs_for_pop : (dict) keyword arguments passed to the distrib_pop distribution type.
 Size not included.
 kwargs_for_infec : (dict) keyword arguments passed to the distrib_infect distribution type. Size not
 included.

 Outputs:
 df : (pandas DataFrame) object holding all values of infected people. Each
 column of "infected day _" corresponds to a different day,
 with "_" being some integer or float. The "name" column
 assigns a name to each object, independent of index. In
 the infected columns, a 0 counts as infected, while a 1 is
 healthy.
 """
 # making separate name column because indices get messy.
 # other cols later.

 def initial_infect(df, distrib_infec, N_initial, kwargs):
 """
 Based on the specified distribution functions, this initializes the infected
 population.

 Inputs:
 df : (pandas DataFrame) object holding all values of infected people. Each
 column of "infected day _" corresponds to a different day,
 with "_" being some integer or float. The "name" column
 assigns a name to each object, independent of index. In
 the infected columns, a 0 counts as infected, while a 1 is
 healthy.
 distrib_infec : (func) distribution function to determine how initial infections are initialized.
 **kwargs : (dict) keyword arguments passed to the distrib_infect distribution type. Size not
 included.

 Outputs:
 df : (pandas DataFrame) object holding all values of infected people. Each
 column of "infected day _" corresponds to a different day,
 with "_" being some integer or float. The "name" column
 assigns a name to each object, independent of index. In
 the infected columns, a 0 counts as infected, while a 1 is
 healthy. This time, initialized with the initially infected individuals.
 """
 infected = distrib_infec(size=N_initial, **kwargs)
 for inf in infected:
 uninfected = df[df['infected day 0'] == 1] # want to find a person that isn't infected
 closest_in_frame = uninfected['locs'].sub(inf).abs().idxmin()
 df.loc[closest_in_frame, 'infected day 0'] = 0 # make that closest individual infected
 return df

 name = np.arange(N)
 zero_infected = np.ones(N)
 locs = distrib_pop(size=N, **kwargs_for_pop)
 d = {'name': np.arange(N), 'infected day 0': zero_infected, 'locs' : locs}

 df = pd.DataFrame(data=d)

 df = initial_infect(df, distrib_infec, N_initial, kwargs_for_infec) # now infected
 for t in tqdm(range(1, t_steps), position=0, leave=True):
 df = infect1D(df, trans_rate, t, thresh, power)
 return df

[docs]def animate_histogram(df, title):
 """
 animates a histogram.

 adapted from https://matplotlib.org/gallery/animation/animated_histogram.html
 """

 n, bins = np.histogram(df['locs'][df['infected day 29'] == 0], 30)
 infect_cols = [col for col in df.columns if 'infected day' in col]

 # get the corners of the rectangles for the histogram
 left = np.array(bins[:-1])
 right = np.array(bins[1:])
 bottom = np.zeros(len(left))
 top = bottom + n
 nrects = len(left)

 nverts = nrects * (1 + 3 + 1)
 verts = np.zeros((nverts, 2))
 codes = np.ones(nverts, int) * path.Path.LINETO
 codes[0::5] = path.Path.MOVETO
 codes[4::5] = path.Path.CLOSEPOLY
 verts[0::5, 0] = left
 verts[0::5, 1] = bottom
 verts[1::5, 0] = left
 verts[1::5, 1] = top
 verts[2::5, 0] = right
 verts[2::5, 1] = top
 verts[3::5, 0] = right
 verts[3::5, 1] = bottom

 patch = None

 def animate(i):
 # simulate new data coming in
 col = infect_cols[i]
 n, bins2 = np.histogram(df['locs'][df[col] == 0], bins=bins)
 top = n
 verts[1::5, 1] = top
 verts[2::5, 1] = top
 lab = f'{col[-2:]} days after patient 0'
 label.set_text(lab)

 return [patch,]

 fig, ax = plt.subplots(figsize=(8,8))
 # ax.set_ylim(0, 2)
 ax.set_xlim(-20, 20)
ax.set_ylim(0, 10000)
 ax.set_title(title, fontsize=20)
 lab = f'{infect_cols[0][-2:]} days after patient 0'
 label = ax.text(-9, 0.9 * np.max(n), lab, fontsize=18)
 ax.set_ylabel('Number of infected individuals', fontsize=20)
 ax.set_xlabel(r'Location', fontsize=20)
 barpath = path.Path(verts, codes)
 patch = patches.PathPatch(
 barpath, facecolor='maroon', edgecolor='gray', alpha=0.5)
 ax.add_patch(patch)

 # ax.set_xlim(left[0], right[-1])
 ax.set_ylim(bottom.min(), top.max())

 return animation.FuncAnimation(fig, animate, len(infect_cols), repeat=False, blit=True)

 Source code for covid_19_simulations.two_d

import numpy as np
import pandas as pd
from numba import jit

from math import sqrt
from tqdm import tqdm

[docs]@jit(nopython=True)
def find_first(searched, vec):
 """return the index of the first occurence of item in vec"""
 for i, item in enumerate(vec):
 if searched == item:
 return i
 return -1

[docs]def do_multiplier(x, y, power, thresh, df_sorted, df2D_test, farthest_calc):
 x = np.float64(x)
 y = np.float64(y)
 power = np.float64(power)
 thresh = np.float64(thresh)
 place_in_sorted = find_first(x, df_sorted.x.values)
 calc_indices = df_sorted.index[place_in_sorted
 - np.int(farthest_calc):place_in_sorted
 + np.int(farthest_calc)]
 df_calc_x = df2D_test.x[calc_indices]
 df_calc_y = df2D_test.y[calc_indices]
 dists = np.sqrt((df_calc_x.sub(x))**2 + (df_calc_y.sub(y))**2)
 multiplier_col = np.where(dists > thresh, np.power(dists, -power), np.ones_like(dists))
 del dists
 return multiplier_col, calc_indices

[docs]def distance(frame, ind1, ind2):
 """Just finding the distance between two rows and their x-y pairs."""
 x1, y1 = frame['x'].values[ind1], frame['y'].values[ind1]
 x2, y2 = frame['x'].values[ind2], frame['y'].values[ind2]
 return sqrt((x1-x2)**2 + (y1-y2)**2)

[docs]def infect2D(df, trans_rate, day_name, thresh, power, df_sorted, farthest_calc):
 """
 Simulates a single day of infection in 1D.

 NOTE: a 0 counts as infected, while a 1 is healthy.

 Inputs:
 df : (pandas DataFrame) object holding all values of infected people. Each
 column of "infected day _" corresponds to a different day,
 with "_" being some integer or float. The "name" column
 assigns a name to each object, independent of index. In
 the infected columns, a 0 counts as infected, while a 1 is
 healthy.
 trans_rate : (float) rate of transmission between individuals. infection
 is performed in a probabilistic manner, casting it as a
 draw from a binomial distribution with a rate of
 1 - trans_rate.
 day_name : (float or int) the day of this infection, used to create a new
 column in the dataframe tracking the day's infections.
 dist_matrix : (numpy.ndarray) distance matrix holding the distances between all individuals.

 Outputs:
 df : (pandas DataFrame) object, same as the input, but with a new column
 holding this day's infected results.
 """
 df[f"infected day {day_name}"] = df[f"infected day {day_name - 1}"].copy()
 infected = df[df[f'infected day {day_name}'] == 0.]

 if len(infected) == len(df): # everyone is infected
 return df
 for index, row in infected.iterrows(): # this is number of rows, right?
 # find distance multiplier between this ind and all others
 x, y = row['x'], row['y']
 multiplier_col, calc_indices = do_multiplier(x, y, power, thresh, df_sorted, df, farthest_calc)
 p = 1 - (multiplier_col * trans_rate)
 infect_col = np.random.binomial(size=len(calc_indices), p=p, n=1) # 1 toss
df.loc[calc_indices, f'infected day {day_name}'] *= infect_col
 df.loc[calc_indices[infect_col == 0], f'infected day {day_name}'] = 0
 return df

[docs]def simulate2D(N, trans_rate, t_steps, N_initial, thresh, power,
 distrib_pop, distrib_infec, kwargs_for_pop={},
 kwargs_for_infec={}):
 """
 Simulates an infection run in 1D.

 Inputs:
 N : (int) number of individuals in the system.
 trans_rate : (float) rate of transmission between individuals. infection
 is performed in a probabilistic manner, casting it as a
 draw from a binomial distribution with a rate of
 1 - trans_rate.
 t_steps : (int) number of time steps ("days") to consider.
 N_initial : (int) number of initially infected individuals.
 thresh : (float) distance less than which infection is transmitted at the trans_rate;
 that is, less than which this function returns a value of 1. At
 a distance greater than this, this function returns 1/distance^power.
 power : (float) Greater than 0. Power to which the multiplier falls off if the distance
 is greater than some threshold.
 distrib_pop : (func) distribution function to determine how individuals are initialized.
 distrib_infec : (func) distribution function to determine how initial infections are initialized.
 kwargs_for_pop : (dict) keyword arguments passed to the distrib_pop distribution type.
 Size not included.
 kwargs_for_infec : (dict) keyword arguments passed to the distrib_infect distribution type. Size not
 included.

 Outputs:
 df : (pandas DataFrame) object holding all values of infected people. Each
 column of "infected day _" corresponds to a different day,
 with "_" being some integer or float. The "name" column
 assigns a name to each object, independent of index. In
 the infected columns, a 0 counts as infected, while a 1 is
 healthy.
 """
 # making separate name column because indices get messy.
 # other cols later.
 name = np.arange(N)
 zero_infected = np.ones(N)
 pop = initialize_pop_2D(N, distrib_pop, **kwargs_for_pop)
 x, y = pop[:, 0], pop[:, 1]
 d = {'name': np.arange(N), 'infected day 0': zero_infected, 'x' : x, 'y' : y}

 df = pd.DataFrame(data=d)

 pop = initialize_pop_2D(N_initial, distrib_infec, **kwargs_for_infec)
 x, y = pop[:, 0], pop[:, 1]
 all_infected = np.zeros(N_initial)
 d_infec = {'name': np.arange(N, N + N_initial), 'infected day 0': all_infected, 'x' : x, 'y' : y}
 df_infec = pd.DataFrame(data=d_infec)

 df = df.append(df_infec, ignore_index = True)

 test_vals = np.round(np.linspace(1, 1000, 100))
 df['Rank'] = df.x.rank() + df.y.rank()
 df_sorted = df.sort_values('Rank', ascending=False).drop('Rank',axis=1)
 dists = np.array([distance(df_sorted, 100, int(val)) for val in test_vals])
 farthest_calc = int(test_vals[np.argmin(np.abs(dists - thresh))])
 # the above determines the farthest index to calculate distance from a given point.

 for t in tqdm(range(1, t_steps), position=0, leave=True):
 df = infect2D(df, trans_rate, t, thresh, power, df_sorted, farthest_calc)
 return df

[docs]def initialize_pop_2D(N, distrib, **kwargs):
 '''
 This will change once we have the U.S. map.

 distrib: size is not a thing again.
 '''
 pop = distrib(size=(N, 2), **kwargs)

 return pop

 Source code for covid_19_simulations.zero_d

import numpy as np
import pandas as pd

from tqdm import tqdm

[docs]def infect(df, trans_rate, day_name): # need to speed up
 """
 Simulates a single day of infection. Each infected person

 NOTE: a 0 counts as infected, while a 1 is healthy.

 Inputs:
 df : (pandas DataFrame) object holding all values of infected people. Each
 column of "infected day _" corresponds to a different day,
 with "_" being some integer or float. The "name" column
 assigns a name to each object, independent of index. In
 the infected columns, a 0 counts as infected, while a 1 is
 healthy.
 trans_rate : (float) rate of transmission between individuals. infection
 is performed in a probabilistic manner, casting it as a
 draw from a binomial distribution with a rate of
 1 - trans_rate.
 day_name : (float or int) the day of this infection, used to create a new
 column in the dataframe tracking the day's infections.

 Outputs:
 df : (pandas DataFrame) object, same as the input, but with a new column
 holding this day's infected results.
 """
 p = 1 - trans_rate # to confer correct healthy/sick convention.
 for i in range(len(df)):
 if df[f'infected day {day_name - 1}'][i] == 0.0: # if infected, infect others
 infect_col = np.random.binomial(size=len(df), p=p, n=1) # 1 toss, siz

 # next, create a new column to track this day's number of infected individuals
 if i == 0:
 df[f"infected day {day_name}"] = df[f"infected day {day_name - 1}"] * infect_col
 else:
 df[f"infected day {day_name}"] = df[f"infected day {day_name}"] * infect_col
 return df

[docs]def simulate(N, trans_rate, t_steps, N_initial):
 """
 Simulates an infection run.

 Inputs:
 N : (int) number of individuals in the system.
 trans_rate : (float) rate of transmission between individuals. infection
 is performed in a probabilistic manner, casting it as a
 draw from a binomial distribution with a rate of
 1 - trans_rate.
 t_steps : (int) number of time steps ("days") to consider.
 N_initial : (int) number of initially infected individuals.

 Outputs:
 df : (pandas DataFrame) object holding all values of infected people. Each
 column of "infected day _" corresponds to a different day,
 with "_" being some integer or float. The "name" column
 assigns a name to each object, independent of index. In
 the infected columns, a 0 counts as infected, while a 1 is
 healthy.
 """
 # making separate name column because indices get messy.
 # other cols later.
 d = {'name': np.arange(N), 'infected day 0': np.ones(N)}

 df = pd.DataFrame(data=d)

 df.loc[:N_initial, 'infected day 0'] = 0 # Make first N_initial people sick
 t = 1
 for t in tqdm(range(1, t_steps), position=0, leave=True):
 df = infect(df, trans_rate, t)
 return df

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to covid-19-simulations’s documentation!

 		
 About covid-19-simulations

 		
 Installing from source

 		
 API

 		
 zero_d

 		
 one_d

 		
 two_d

_static/up-pressed.png

_static/up.png

_static/plus.png

